今天给各位分享深度学习和传统的图像处理的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
深度学习作为输入的图像一般是矢量图吗?
深度学习作为输入的图像一般为矢量图。
在电脑中,图像有两种表达方式,一种叫做位图,另一种叫做矢量图。
位图是把一幅彩色图像分成许许多多像素,用若干位数字来指定每个像素的颜色、亮度等属性。因此一幅位图就由许许多多描述每个像素的数据构成,这种表示方法很直观,而且能够很精细地描述图像。位图一般可以通过扫描仪、数码相机等设备获得。影响位图大小的因素是图像的分辨率和颜色数。
矢量图是由一系列电脑指令来表示一幅图,比如画点、画线的指令等,用数学表达式来表示一幅图。在显示图像时,电脑是一边计算一边显示的。矢量图文件的大小取决于完成图像绘制工作所需的指令条数。
矢量图容易做到对图像的移动、缩放和旋转等等。相同的或者类似的图像可以当作构成复杂图像的构件,把它们存放在图库中,以缩短绘图时间,减少矢量图文件的大小。对于一幅很复杂的彩色照片,则很难用数学表达式来表达,这时往往用位图来表示。一般位图文件比矢量图的文件要大。
位图是由像素组成的,在放大位图的时候,如果没有特殊的处理,位图会变得很粗糙,原因是图像的尺寸变大了,而像素的数量却没有改变。
矢量图在放大时,不会出现这种失真,因为矢量图中存放的是绘制图像的信息,不会因为图像大小的改变而改变。
希望我能帮助你解疑释惑。
关于深度学习和传统的图像处理和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。